
m01 – Sorting Introduction – m01

Chapter m01 – Sorting

1. Scope of the Chapter

This chapter provides functions for sorting data. Most of the functions can handle data of arbitrary
type which is sorted according to a user-supplied comparison function.

2. Background

The general problem may be defined as follows. We are given n items of data

R1, R2, . . . , Rn.

Each item Ri contains a key Ki which can be ordered relative to any other key according to
some specified criterion (for example, ascending numeric value). The problem is to determine a
permutation

p(1), p(2), . . . , p(n)

which puts the keys in order:

Kp(1) ≤ Kp(2) ≤ . . . ≤ Kp(n)

Sometimes we may wish actually to rearrange the items so that their keys are in order; for other
purposes we may simply require a table of indices so that the items can be referred to in sorted
order; or yet again we may require a table of ranks, that is, the positions of each item in the sorted
order.

For example, given the single-character items, to be sorted into alphabetic order:

E B A D C

the indices of the items in sorted order are

3 2 5 4 1

and the ranks of the items are

5 2 1 4 3

Indices may be converted to ranks, and vice versa, by simply computing the inverse permutation.

The items may consist solely of the key. On the other hand, the items may contain additional
information, and then there may be many distinct items with equal keys, and it may be important
to preserve the original order among them: if this is achieved, the sorting is called stable.

The Quicksort algorithm, used by nag quicksort (m01csc), is not stable in this sense; hence an
alternative function, nag stable sort (m01ctc), is provided which does perform a stable sort, but
requires more internal workspace, and may be slower.

3. Available Functions

3.1. Functions which rearrange the data into sorted order

Chain sort of linked list of items of arbitrary data type m01cuc
Quicksort of vector of type double m01cac
Quicksort of vector of arbitrary data type m01csc
Stable sort of vector of arbitrary data type m01ctc

3.2. Function which determines the ranks of the data, leaving it unchanged

Rank a vector of arbitrary data type m01dsc

3.3. Function which rearranges the data according to pre-determined ranks

Rearrange a vector of arbitrary data type m01esc

3.4. Utility functions

Invert a permutation, converting a rank vector to an index vector or vice versa m01zac
Search a vector of arbitrary data type for a match to a given key m01fsc

[NP3275/5/pdf] 3.intro-m01.1


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


